Документ подписан простой электронной подписью Информация о владельце:

ФИО: Ганеев Винер Валиахметинистерство науки и высшего образования российской Должность: Директор ФЕДЕРАЦИИ

Дата подписания: 08.11.2023 12:26:56
Уникальный программный ключ:
fceab25d7092f3bff743e8ad3f8d59cFPA3QBATE
ЛЬНОГО УЧРЕЖДЕНИЯ ВЫСШЕГО ОБРАЗОВАНИЯ

«УФИМСКИЙ УНИВЕРСИТЕТ НАУКИ И ТЕХНОЛОГИЙ»

Колледж

Рабочая программа дисциплины

дисциплина

ЕН. 02 Теория вероятности и математическая статистика

Дисциплина математического и общего естественнонаучного цикла *обязательная часть*

специальность

09.02.01

код

Компьютерные системы и комплексы наименование специальности

Разработчик (составитель)

Преподаватель 1 категории Байгазов Сергей Павлович

ОГЛАВЛЕНИЕ

1. ПАСПОРТ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ	3
1.1. Область применения рабочей программы	3
1.2. Место учебной дисциплины в структуре основной профессионали образовательной программы	
1.3. Цель и планируемые результаты освоения дисциплины:	3
2. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ	4
2.1 Объем дисциплины и виды учебной работы	4
2.2. Тематический план и содержание дисциплины	5
3. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕГО КОНТРОИ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛІ (МОДУЛЮ)	ине
4. УСЛОВИЯ РЕАЛИЗАЦИИ ДИСЦИПЛИНЫ	9
4.1. Требования к минимальному материально-техническому обеспечению	9
4.2. Учебно-методическое и информационное обеспечение дисциплины	9
4.2.1. Перечень основной и дополнительной учебной литературы, необходимой освоения дисциплины (модуля)	
4.2.2. Перечень ресурсов информационно-телекоммуникационной сети «Интер (далее - сеть «Интернет»), необходимых для освоения дисциплины (модуля)	
4.2.3. Перечень информационных технологий, используемых при осуществле образовательного процесса по дисциплине, включая перечень программ обеспечения и информационных справочных систем (при необходимости)	ного
ПРИЛОЖЕНИЕ 1. Календарно-тематический план	10
ПРИЛОЖЕНИЕ 2. Фонд оценочных средств	16

1. ПАСПОРТ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ

1.1. Область применения рабочей программы

Рабочая программа дисциплины является частью основной образовательной программы в соответствии с $\Phi \Gamma O C$ для специальности: 09.02.01 «Компьютерные системы и комплексы», для обучающихся очной формы обучения.

1.2. Место учебной дисциплины в структуре основной профессиональной образовательной программы

Дисциплина *«Теория вероятности и математическая статистика»* является дисциплиной математического и общего естественнонаучного цикла. Дисциплина реализуется в рамках *базовой* части.

1.3. Цель и планируемые результаты освоения дисциплины:

Код ОК, ПК	Умения	Знания
ОК 1-9, ПК 1.2 ПК 1.4; ПК 2.2.	У 1 - вычислять вероятность событий с использованием элементов комбинаторики; У 2 - использовать методы математической статистики;	31 - основы теории вероятностей и математической статистики;

2. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

2.1 Объем дисциплины и виды учебной работы

Очная форма обучения

Вид учебной работы	Объем часов
Максимальная учебная нагрузка (всего):	106
Обязательная аудиторная учебная нагрузка (всего)	74
в том числе:	
лекции (уроки)	32
практические занятия	42
Самостоятельная работа обучающегося (всего)	32
Промежуточная аттестация в форме зачет в 4 семестре	

2.2. Тематический план и содержание дисциплины

Очная форма обучения

Наименование разделов и	Содержание учебного материала, практические работы,	Объем	Уровень
тем	самостоятельная работа обучающихся	часов	освоения
	Раздел 1.Теория вероятности	24/28/2	
		4	
Тема 1.1. Элементы	Теоретическое обучение:	2	2
комбинаторики	Лекция. Понятие комбинаторики. Виды комбинаций без повторений: определения, формулы		
	Практические занятия:	4	2
	Комбинаторные принципы сложения и произведения. Виды комбинаций с		
	повторениями: определения, формулы		
	Сам. обучение. Решение комбинаторных задач	2	2
Тема 1.2. Случайные		2	2
события. Классическое	Лекция. Понятие случайного события. Совместные и несовместные события.		
определение вероятности.	Равновозможные события. Классическое определение вероятности		
	Практические занятия:	4	2
	Вычисление вероятностей событий по классической формуле определения		
	вероятности. Геометрическая вероятность		
	Сам. обучение. Решение задач с использованием геометрической и	2	2
	статистической вероятности.		
Тема 1.3. Вероятности	Теоретическое обучение:	2	2
сложных событий	Лекция. Вероятность противоположных событий. Произведение событий,		
	сумма событий. Условная вероятность. Теорема умножения. Независимые		
	события. Сумма событий. Формулы Байеса		
	Практические занятия:	4	2
	Вычисление вероятностей сложных событий.		
	Сам. обучение. Вычисление вероятностей сложных событий	2	2
Тема 1.4. Схема Бернулли	Теоретическое обучение:	2	2
	Лекция. Понятие схемы Бернулли. Формула Бернулли. Локальная и		
	интегральная формулы Муавра - Лапласа в схеме Бернулли		
	Практические занятия:	4	2

	Вычисление вероятностей событий в схеме Бернулли		
	Контрольная работа №1 по разделам: элементы комбинаторики, основы		
	теории вероятностей.		
	Сам. обучение. Подготовка к к.р.№1	2	2
Тема 1.5. Понятие ДСВ.	Теоретическое обучение:	4	2
Распределение ДСВ	Лекция. Понятие случайной величины. Понятие дискретной случайной величины (ДСВ). Примеры ДСВ. Закон распределения ДСВ. Непрерывные случайные величины. Функции от ДСВ		
	Практические занятия: Распределения ДСВ. Вычисление характеристик ДСВ.	2	2
	Сам. обучение. Закон распределения ДСВ. Непрерывные случайные величины. Функции от ДСВ	4	2
Тема 1.6. Характеристики	Теоретическое обучение:	2	2
ДСВ и их свойства	Лекция. Числовые характеристики ДСВ: математическое ожидание, дисперсия, среднее - квадратичное отклонение. Определение, сущность, свойства		
	Практические занятия: Вычисление характеристик ДСВ.	2	2
	Сам. обучение. Числовые характеристики ДСВ	2	2
Тема 1.7. Биномиальное и	Теоретическое обучение:	2	2
геометрическое распределения	Лекция. Понятие биномиального распределения, характеристики биномиального распределения. Распределения Пуассона. Понятие геометрического распределения, характеристики геометрического распределения		
	Практические занятия: Построение биноминального и геометрического распределения, распределения Пуассона	2	2
	Сам. обучение. Законы распределения	2	2
Тема 1.8. Непрерывные случайные величины (НСВ)	Теоретическое обучение: Понятие НСВ. Равномерно распределенная НСВ. Геометрическое определение вероятности	2	2
	Практические занятия: Решение задач на формулу геометрического определения вероятности	2	2

	Сам. обучение. Равномерно распределенная НСВ.	2	2		
Тема 1.9. Характеристики	Теоретическое обучение:	2	2		
НСВ	Лекция. Функция плотности НСВ: определение, свойства. Функция				
	плотности для равномерно распределённой НСВ. Интегральная функция				
	распределения НСВ: определение, свойства, её связь с функцией плотности.				
	Медиана НСВ.				
	Практические занятия: Вычисление вероятностей и нахождение	2	2		
	характеристик для НСВ с помощью функции плотности и интегральной				
	функции распределения				
	Сам. обучение. Числовые характеристики НСВ	2	2		
Тема 1.10. Нормальное	Теоретическое обучение:	2	2		
распределение.	Лекция. Определение и функция плотности нормально распределённой НСВ.				
Показательное распределение	Кривая Гаусса и ее свойства. Интегральная функция распределения				
	нормально распределенной НСВ. Определение и функция плотности				
	показательно распределенной НСВ. Интегральная функция распределения				
	показательно распределенной НСВ. Характеристики показательно				
	распределенной НСВ.				
	Практические занятия:	2	2		
	Вычисление вероятностей по нормальному и экспоненциальному законам.				
	Сам. обучение. Законы распределения НСВ	2	2		
Тема 1.11. Центральная	Теоретическое обучение:	2	2		
предельная теорема. Закон	Лекция. Центральная предельная теорема. Неравенство Чебышева. Закон				
больших чисел. Вероятность	больших чисел в форме Чебышева. Понятие частоты события. Статистическое				
и частота.	понимание вероятности. Закон больших чисел в форме Бернулли				
	Практические занятия:	0			
	Сам. обучение. Понятие частоты события. Статистическое понимание	2	2		
	вероятности.	8/6/8			
	Раздел 2. Элементы математической статистики				
Тема 2.1. Выборочный		2	2		
метод. Статистические					
оценки параметров	её функции плотности. Медиана НСВ: определение, методика нахождения.				

распределения	Дискретные и интервальные вариационные ряды. Полигон и гистограмма.		
Francisco Constitution	Числовые характеристики выборки.		
	Практические занятия:	4	2
	Построение для заданной выборки диаграммы, расчет ее числовых	-	_
	характеристик.		
	Сам. обучение. Полигон и гистограмма. Числовые характеристики выборки.	2	2
Тема 2.2. Интервальная	Теоретическое обучение:	2	2
оценка математического	Понятие интервальной оценки. Надежность доверительного интервала.		
ожидания	Интервальная оценка математического ожидания нормального распределения		
	при известной дисперсии. Интервальное оценивание математического		
	ожидания нормального распределения; интервальное оценивание вероятности		
	события.		
	Практические занятия:	2	2
	Интервальное оценивание математического ожидания и вероятности события.		
	Сам. обучение. Интервальные оценки	2	2
Тема 2.3. Моделирование	Теоретическое обучение:	2	2
случайных величин. Метод	Лекция. Моделирование случайных величин. Таблицы случайных величин.		
статистических испытаний.	Сущность метода статистических испытаний. Практическая значимость		
	результатов, получаемых методами математической статистики.		
	Практические занятия:	2	2
	Контрольная работа №2 по темам 2.1 и 2.2		
	Сам. обучение. Подготовка к к.р.№2	2	2
Тема 2.4. Моделирование	Теоретическое обучение:	2	2
случайных величин.	Лекция. Моделирование случайных величин. Таблицы случайных величин.		
	Сущность метода статистических испытаний. Практическая значимость		
	результатов, получаемых методами математической статистики.		
	Практические занятия:	6	2
	Моделирование случайных величин сложных испытаний и их		
	результатов. Метод статистических испытаний. Уравнение прямой регрессии.		
	Коэффициент корреляции		
	Сам. обучение. Уравнение прямой регрессии. Коэффициент корреляции	2	2

· ·	0.0	
Итого	1 02	
111010	1 12	

Последовательное тематическое планирование содержания рабочей программы дисциплины, календарные объемы, виды занятий, формы организации самостоятельной работы также конкретизируются в календарно-тематическом плане (Приложение № 1)

3. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕГО КОНТРОЛЯ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Фонд оценочных средств (далее — Φ OC) - комплект методических и контрольных материалов, используемых при проведении текущего контроля освоения результатов обучения и промежуточной аттестации. Φ OC предназначен для контроля и управления процессом приобретения обучающимися необходимых знаний, умений, практического опыта и компетенций, определенных во Φ FOC (Приложение \mathbb{N} 2).

4. УСЛОВИЯ РЕАЛИЗАЦИИ ДИСЦИПЛИНЫ

4.1. Требования к минимальному материально-техническому обеспечению

Реализация учебной дисциплины по ФГОС СПО не требует наличия специализированного учебного кабинета.

Оборудование учебного кабинета:

посадочные места по количеству обучающихся; рабочее место преподавателя; доска с мелом.

Технические средства обучения: не требуются

4.2. Учебно-методическое и информационное обеспечение дисциплины (модуля)

4.2.1. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)

Основная учебная литература:

Основная учебная литература:

- 1. Гмурман , В. Е. Теория вероятностей и математическая статистика : учеб. пособие для студ. вузов / В. Е. Гмурман .— 12-е изд., перераб. М.: Высшая школа, 2006. 479 с. ISBN 5-9692-0104-9 : 230 р. 00 к.
- 2. Гмурман В. Е. Руководство к решению задач по теории вероятностей и математической статистике: Учеб. пособие для студ. вузов / В. Е. Гмурман. 11-е изд.,перераб. М.: Высшая школа, 2007. 404 с. ISBN 978-5-9692-0145-3 : 220 р. 00 к.
- 3. Теория вероятности и элементы математической статистики: учебно-методическое пособие для студентов колледжа (специальности 09.02.01 Компьютерные системы и комплексы и 09.02.05 Прикладная информатика /Авт. С. П. Байгазов. Бирск: Бирский филиал Баш. ГУ, 2018. 55 с.

Дополнительная учебная литература:

- 1. Ивашев-Мусатов, Олег Сергеевич. Теория вероятностей и математическая статистика: учебник и практикум для СПО / О. С. Ивашев-Мусатов; МГУ им. М. В. Ломоносова .— 3-е изд., исправл. и доп. Москва : Юрайт, 2017 .— 224 с. (Профессиональное образование) .
- 2. Кочетков, Евгений Семенович. Теория вероятностей и математическая статистика: учебник для студ. СПО, обуч. по спец. информ. и вычисл. техники / Е. С. Кочетков, С. О. Смерчинская, В. В. Соколов— 2-е изд., перераб. и доп. Москва: ФОРУМ:ИНФРА-М, 2017.— 240 с.: ил. (Среднее профессиональное образование)

4.2.2. Перечень ресурсов информационно-телекоммуникационной сети «Интернет» (далее - сеть «Интернет»), необходимых для освоения дисциплины (модуля)

№	Наименование электронной библиотечной системы
1.	Научная электронная библиотека eLIBRARY.RU [Электронный ресурс]. – Режим
	доступа: <u>https://elibrary.ru/</u> .
2.	Электронная библиотечная система «Лань» [Электронный ресурс]. – Режим
	доступа: https://e.lanbook.com/ .
3.	Университетская библиотека онлайн biblioclub.ru [Электронный ресурс]. – Режим
	доступа: <u>http://biblioclub.ru/</u> .
4.	Электронная библиотека УУНиТ [Электронный ресурс]. – Режим доступа:
	https://elib.bashedu.ru/.
5.	Российская государственная библиотека [Электронный ресурс]. – Режим доступа:
	https://www.rsl.ru/.
6.	Национальная электронная библиотека [Электронный ресурс]. – Режим доступа:
	https://xn90ax2c.xnp1ai/viewers/.
7.	Национальная платформа открытого образования noed.ru [Электронный ресурс].
	– Режим доступа: http://npoed.ru/ .
8.	Электронное образование Республики Башкортостан [Электронный ресурс]. –
	Режим доступа: https://edu.bashkortostan.ru/ .
9.	Информационно-правовой портал Гарант.ру [Электронный ресурс]. – Режим
	доступа: <u>http://www.garant.ru/</u> .

4.2.3. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем (при необходимости)

Занятия проводятся по традиционной технологии

ПРИЛОЖЕНИЕ 1

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

БИРСКИЙ ФИЛИАЛ ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО БЮДЖЕТНОГО ОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ ВЫСШЕГО ОБРАЗОВАНИЯ «УФИМСКИЙ УНИВЕРСИТЕТ НАУКИ И ТЕХНОЛОГИЙ»»

	Колледж
	СОГЛАСОВАНО Председатель ПЦК М.П. Гареева
Календа	арно-тематический план
	7. 02 Теория вероятности и гематическая статистика
	специальность пьютерные системы и комплексы» наименование специальности
06	бязательная часть ровень подготовки
Разработчик (составитель)	
Преподаватель 1 категории Байгазов Сергей Павлович	
ученая степень, ученое звание, категория, Ф.И.О.	подпись

Бирск 2022

He	Темы лекций	Часы	Темы практических занятий	Часы	Домашнее задание
деля					
	Раздел 1. Т	еория в	ероятности	2 4/18	
1 неделя	Тема 1.1. Элементы комбинаторики 1. Понятие комбинаторики. Виды комбинаций без повторений: определения, формулы	2	Тема 1.1. 1. Комбинаторные принципы сложения и произведения	2	Чтение лекций. Выполнение домашней работы по карточкам
2 неделя	Тема 1.2. Случайные события. Классическое определение вероятности. 2. Понятие случайного события. Совместные и несовместные события. Равновозможные события. Классическое определение вероятности. и геометрическое определение вероятности определение вероятности	2	2. Виды комбинаций с повторениями: определения, формулы	2	Чтение лекций. Выполнение домашней работы по карточкам
3 неделя	Тема 1.3. Вероятности сложных событий 3. Вероятность противоположных событий. Произведение событий, сумма событий. Условная вероятность. Теорема умножения. Независимые события. Сумма событий. Формулы Байеса	2	Тема 1.2. Случайные события. Классическое определение вероятности. 3. Вычисление вероятностей событий по классической формуле определения вероятности	2	Чтение лекций. Выполнение домашней работы по карточкам
4 неделя	Тема 1. 4. Схема Бернулли 4. Понятие схемы Бернулли. Формула Бернулли. Локальная и интегральная формулы Муавра - Лапласа в схеме Бернулли	2	4. Статистическое и геометрическое определения вероятности	2	Чтение лекций. Выполнение домашней контрольной работы по карточкам

5 неделя	Тема 1.5. Понятие ДСВ. Распределение ДСВ. 5. Понятие случайной величины. Понятие дискретной случайной величины (ДСВ). Примеры ДСВ. Закон распределения ДСВ.	2	Тема 1.3. Вероятности сложных событий 5. Вычисление вероятностей сложных событий.	2	Чтение лекций. Выполнение домашней контрольной работы по карточкам
6 неделя	6. Независимые случайные величины. Функции от ДСВ	2	6. Вычисление вероятностей сложных событий	0	Чтение лекций. Выполнение домашней работы по карточкам
7 неделя	Тема 1. 6. Характеристики ДСВ и их свойства 7. Числовые характеристики ДСВ: математическое ожидание, дисперсия, среднее - квадратичное отклонение. Определение, сущность, свойства	2	Тема 1.4. Схема Бернулли 7. Вычисление вероятностей событий в схеме Бернулли	2	Чтение лекций. Выполнение домашней работы по карточкам
8 неделя	Тема 1.7. Биномиальное и геометрическое распределения 8. Понятие биномиального распределения, характеристики биномиального распределения. Распределения Пуассона. Геометрического распределения	2	8. Контрольная работа №1	2	Чтение лекций. Выполнение домашней работы по карточкам
9 неделя	Тема1. 8. Непрерывные случайные величины (НСВ) 9. Понятие НСВ. Равномерно распределенная НСВ.	2	Тема 1.5. Понятие ДСВ. Распределение ДСВ. 9. Распределения ДСВ. Вычисление характеристик ДСВ.	2	Чтение лекций. Выполнение домашней контрольной работы по карточкам

K	Тема 1. 9. Характеристики НСВ.		Тема 1.6. Характеристики ДСВ и их		Чтение лекций.
10 неделя	10. Функция плотности НСВ:	2	свойства	2	Выполнение
	определение, свойства. Функция		10. Вычисление характеристик ДСВ.		домашней работы по
0 1	плотности для равномерно распределённой		Вычисление характеристик ДСВ.		карточкам
	НСВ. Интегральная функция				
	распределения НСВ: определение,				
	свойства, её связь с функцией плотности				
	Тема 1. 10. Нормальное	2	Тема 1.7. Биномиальное и	2	Чтение лекций.
_K	распределение. Показательное		геометрическое распределения		Выполнение
1 неделя	распределение.		11. Построение биноминального и		домашней работы по
Нед	11. Определение и функция плотности		геометрического распределения,		карточкам
1.1	нормально распределённой НСВ.		распределения Пуассона		
	Интегральная и дифференциальные				
	функции распределения нормально				
	распределенной НСВ. Характеристики				
	показательно распределенной НСВ.				
	Тема 1.11. Центральная предельная	2	Тема 1.8. Непрерывные случайные	2	Чтение лекций.
😹	теорема. Закон больших чисел.		величины (НСВ)		Выполнение
неделя	Вероятность и частота.		12. Решение задач на формулу		домашней работы по
Нед	12. Центральная предельная теорема.		геометрического определения вероятности		карточкам
2 1	Неравенство Чебышева. Закон больших				
-	чисел в форме Чебышева. Понятие				
	частоты события. Статистическое				
	понимание вероятности. Закон больших				
	чисел в форме Бернулли				

		2	Тема 1. 9. Характеристики НСВ 13. Вычисление вероятностей и нахождение характеристик для НСВ с	2	Чтение лекций. Выполнение домашней работы по
3 неделя			помощью функции плотности и интегральной функции распределения Тема 1. 10. Нормальное		карточкам
			распределение. Показательное распределение		
			14. Вычисление вероятностей по		
			нормальному и экспоненциальному		
	Разлел 1. Элементы	і матем	законам атической статистики	8	
	1 100001 10 30000112			/14	
В	Тема 2.1. Выборочный метод.	2	Тема 2.1. Выборочный метод.	2	Чтение лекций.
14 неделя	Статистические оценки параметров		Статистические оценки параметров		Выполнение
Не	распределения		распределения		домашней
4	13. Генеральная совокупность и		15. Выборка. Ее характеристики.		контрольной работы
	выборка. Сущность выборочного метода.		Полигоны и гистограммы.		по карточкам
	НСВ по её функции плотности. Медиана				
	НСВ: определение, методика нахождения.				
RIC	Тема 2.2. Вариационные ряды.	2	16. Точечные статистические оценки	2	Чтение лекций.
неделя	Выборка				Выполнение
	14. Дискретные и интервальные				домашней
15	вариационные ряды. Полигон и				контрольной работы
	гистограмма. Числовые характеристики				по карточкам
	выборки.				

16 неделя	Тема 2.3. Интервальная оценка математического ожидания 15. Интервальные оценки математического ожидания нормального распределения при известной и неизвестной дисперсии. исправленная дисперсия	2	Тема 2.2. Интервальная оценка математического ожидания 17. Интервальное оценки математического ожидания и вероятности события события	2	Чтение лекций. Выполнение домашней контрольной работы по карточкам
17 неделя	Тема 2.4. Моделирование случайных величин. 16. Моделирование случайных величин. Таблицы случайных величин. Сущность метода статистических испытаний. Практическая значимость результатов, получаемых методами математической статистики. Уравнение прямой регрессии. Коэффициент корреляции	2	18. Контрольная работа №2	2	Чтение лекций
18 неделя		2	Тема 2.4. Моделирование случайных величин 19. Моделирование случайных величин сложных испытаний и их результатов. Метод статистических испытаний 20. Уравнение прямой регрессии. Коэффициент корреляции	2	Чтение лекций
19 неделя			21.Подготовка к тестированию. Решение различных задач.	2	

Зачет		

ПРИЛОЖЕНИЕ 2

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ІРСКИЙ ФИЛИАЛ ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО БЮДЖЕТНОГО

БИРСКИЙ ФИЛИАЛ ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО БЮДЖЕТНОГО ОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ ВЫСШЕГО ОБРАЗОВАНИЯ «УФИМСКИЙ УНИВЕРСИТЕТ НАУКИ И ТЕХНОЛОГИЙ»

		Колледж	
		ОДОБРЕНО на заседании комиссии протокол № 1 от 30 Председатель	1
		ПЦК	
			М.П. Гареева
по дисциплине	ЕН. 02	еночных средств Геория вероятности и птическая статистика	
	<i>обяза</i> исциплины и его ч спе	о и общего естественнона тельная часть часть (обязательная, вари ециальность	ативная)
<i>09.02.01</i> КОД		<i>терные системы и коми</i> менование специальност	
	урове	<u>базовый</u> ень подготовки	
Разработчик (состави Преподаватель 1 кан Байгазов Сергей Пав	пегории пович		30.08.2022
ученая степень, уч категория, Ф.І		подпись	дата

I Паспорт фондов оценочных средств

1. Область применения

Фонд оценочных средств (ФОС) предназначен для проверки результатов освоения дисциплины *«Теория вероятности и математическая статистика»*, входящей в состав программы подготовки специалистов среднего звена по специальности 09.02.01 *«Компьютерные системы и комплексы»*. Объем часов на аудиторную нагрузку по дисциплине 74 часов, на самостоятельную работу 32 часов.

2. Объекты оценивания – результаты освоения дисциплины

ФОС позволяет оценить следующие результаты освоения дисциплины в соответствии с ФГОС специальности 09.02.01 «Компьютерные системы и комплексы» и рабочей программой дисциплины «Теория вероятности и математическая статистика».

умения:

- вычислять вероятность событий с использованием элементов комбинаторики;
- использовать методы математической статистики;

знания:

3 1 - основы теории вероятностей и математической статистики.

Вышеперечисленные умения и знания направлены на формирование у обучающихся следующих общих и профессиональных компетенций:

- ОК 1. Понимать сущность и социальную значимость своей будущей профессии, проявлять к ней устойчивый интерес.
- ОК 2. Организовывать собственную деятельность, выбирать типовые методы и способы выполнения профессиональных задач, оценивать их эффективность и качество.
- ОК 3. Принимать решения в стандартных и нестандартных ситуациях и нести за них ответственность.
- OK 4. Осуществлять поиск и использование информации, необходимой для эффективного выполнения профессиональных задач, профессионального и личностного развития.
- ОК 5. Использовать информационно-коммуникационные технологии в профессиональной деятельности.
- ОК 6. Работать в коллективе и команде, эффективно общаться с коллегами, руководством, потребителями.
- ОК 7. Брать на себя ответственность за работу членов команды (подчиненных), результат выполнения заданий.
- OK 8. Самостоятельно определять задачи профессионального и личностного развития, заниматься самообразованием, осознанно планировать повышение квалификации.
- ОК 9. Ориентироваться в условиях частой смены технологий в профессиональной деятельности.
- ПК 1.2. Разрабатывать схемы цифровых устройств на основе интегральных схем разной степени интеграции.
- ПК 1.4. Проводить измерения параметров проектируемых устройств и определять показатели належности.

3 Формы контроля и оценки результатов освоения дисциплины

Контроль и оценка результатов освоения – это выявление, измерение и оценивание знаний, умений и формирующихся общих и профессиональных компетенций в рамках освоения дисциплины.

В соответствии с учебным планом специальности 09.02.05 «Прикладная информатика», рабочей программой дисциплины «Теория вероятности и математическая статистика»_предусматривается текущий и промежуточный контроль результатов освоения курса.

3.1 Формы текущего контроля

Текущий контроль успеваемости представляет собой проверку усвоения учебного материала, регулярно осуществляемую на протяжении курса обучения.

Текущий контроль результатов освоения дисциплины в соответствии с рабочей программой и календарно-тематическим планом происходит при использовании следующих обязательных форм контроля:

- проверка выполнения самостоятельной работы студентов,
- проверка выполнения контрольных работ,

Во время проведения учебных занятий дополнительно используются следующие формы текущего контроля — устный опрос, тестирование по разделам.

Выполнение практических работ. Практические работы проводятся с целью усвоения и закрепления практических умений и знаний, овладения профессиональными компетенциями. В ходе практической работы студенты приобретают умения, предусмотренные рабочей программой дисциплины, учатся - решать системы линейных уравнений; производить действия над векторами, составлять уравнения прямых и определять их взаимное расположение;

вычислять пределы функций; дифференцировать и интегрировать функции; моделировать и решать задачи линейного программирования.. решать задачи на отыскание производной сложной функции, производных второго и высших порядков;

Проверка выполнения самостоятельной работы. Самостоятельная работа направлена на самостоятельное освоение и закрепление обучающимися практических умений и знаний, овладение профессиональными компетенциями.

Самостоятельная подготовка обучающихся по дисциплине предполагает следующие виды и формы работы:

- чтение лекций
- чтение рекомендованной обязательной и дополнительной литературы
- выполнение домашних индивидуальных контрольных работ задач.

Проверка выполнения контрольных работ. Контрольная работа проводится с целью контроля усвоенных умений и знаний и последующего анализа типичных ошибок и затруднений обучающихся в конце изучения темы или раздела. Согласно календарнотематическому плану дисциплины предусмотрено проведение следующих контрольных работ:

контрольная работа №1 по разделу 1; контрольная работа №2 по разделу 2;

Сводная таблица по применяемым формам и методам текущего контроля и оценки результатов обучения

Результаты обучения (освоенные умения, усвоенные знания)	Формы и методы контроля и оценки результатов обучения						
Освоенные умения:							
У 1 - вычислять вероятность событий с	Решение домашних заданий и						
использованием элементов	контрольных работ по разделу 1.						
комбинаторики;							
У 2 -использовать методы	Решение домашних заданий и						
математической статистики;	контрольных работ по разделу 2						
Усвоенные знания:							
3 1 - основы теории вероятностей и	Решение тестовых заданий и сдача						
математической статистики.	зачета						

Вариант контрольной работы №1

Билет 1

- 1. Игральная кость бросается один раз. Найти вероятность того, что на верхней грани выпадет менее трех очков.
- 2. Два стрелка производят по одному выстрелу. Вероятность попадания в цель для первого и второго стрелков равны 0,6 и 0,3 соответственно. Тогда вероятность того, что оба стрелка попадут в цель, равна...
- 3. В первой урне 13 черных и 7 белых шаров, во второй 7 белых и 8 черных шаров. Из наудачу взятой урны вынули один шар. Тогда вероятность того, что вынули белый шар, равна...
- 4. Имеются 2 коробки с мячами для тенниса. В первой коробке 8 красных и 9 зеленых мячей; во второй 9 красных и 12 зеленых. Из этих коробок берут не глядя по одном мячу и кладут в пустую третью коробку. Мячи в третьей коробке перемешивают и берут наудачу один мяч. Какова вероятность того, что мяч зеленый?

Билет 3

- 1. Игральная кость бросается один раз. Найти вероятность того, что на верхней грани выпадет более двух очков.
- 2. В цехе работает семь мужчин и три женщины. Наудачу выбраны три человека. Найти вероятность того, что все они мужчины.
- 3. В каждой из двух урн содержится 8 черных и 2 белых шара. Из второй урны наудачу извлечен один шар и переложен в первую. Найти вероятность того, что шар, извлеченный из первой урны, окажется черным.
- 4. Из трех орудий произвели залп по цели. Вероятность попадания в цель при одном выстреле из первого орудия равна 0,8; для второго и третьего орудий эти вероятности соответственно равны 0,6 и 0,9. Найти вероятность того, что: только два снаряда попадут в цель.

Билет 2

- 1. Игральная кость бросается один раз. Найти вероятность того, что на верхней грани выпадет менее шести очков.
- 2. В каждой из двух урн содержится 6 черных и 4 белых шара. Из первой урны наудачу извлечен один шар и переложен во вторую. Найти вероятность того, что шар, извлеченный из второй урны, окажется черным.
- 3. Три стрелка произвели залп по цели. Вероятность поражения цели первым стрелком равна 0,7; для второго и третьего стрелков эти вероятности соответственно равны 0,8 и 0,9. Найти вероятность того, что: все три стрелка поразят цель.
- 4. В группе из 26 стрелков у 6 стрелков вероятность попадания в цель при одном выстреле равна 0,96; у 14 стрелков 0,75; у 6 стрелков 0,55. Найти вероятность того, что при одном выстреле двух стрелков из группы мишень будет поражена.

Билет 4.

- 1. В урне находятся 2 белых и 3 черных шара. Из урны поочередно вынимают два шара. Найти вероятность того, оба шара белые.
- 2. Два стрелка производят по одному выстрелу. Вероятность попадания в цель для первого и второго стрелков равны 0,9 и 0,4 соответственно. Тогда вероятность того, что оба стрелка попадут в цель, равна...
- 3. В первой урне 12 черных и 5 белых шаров, во второй 7 белых и 10 черных шаров. Из наудачу взятой урны вынули один шар. Тогда вероятность того, что вынули белый шар, равна...
- 4. В первой урне 6 белых шаров, 12 черных и 8 синих. Во второй соответственно 9,7 и 5. Из обеих урн извлекают по одному шару. Какова вероятность того, что оба шара белые?

Вариант контрольной работы №2

Билет 1

- 1. Даны значения случайной величины *X*: 4, 5, 3, 8, 4, 3, 4, 5, 8, 5, 7, 8. Надо а) записать вариационный ряд и закон распределения; б) найти размах, моду и медиану; в) найти математическое ожидание и дисперсию; в) построить полигон частот.
- 2. Для СВ X, распределенной по нормальному $M(X) = 6, \quad D(X) = 16$. Записать плотность вероятности f(x) и найти P(4 < X < 7)
- 3. Найти доверительный интервал для оценки с надежностью 0,95 математического ожидания a, если $\sigma_{\Gamma}=4, \quad \overline{x}_a=10, \quad n=16$
- 4. Студент знает 40 из 50 вопросов программы. Найти вероятность того, что студент знает: а) два вопроса, содержащиеся в билете; б) только один вопрос; в) хотя бы один вопрос.

Билет 3.

- 1. Даны значения случайной величины *X*: 5, 8, 3, 8, 6, 5, 7, 5, 6, 5, 6, 7. Надо а) записать вариационный ряд и закон распределения; б) найти размах, моду и медиану; в) найти математическое ожидание и дисперсию; в) построить полигон частот.

 2. Для СВ *X*, распределенной по нормальному
- закону, известно, что M(X) = 8, D(X) = 4 Записать плотность вероятности f(x) и найти P(5 < X < 10)
- 3. Найти доверительный интервал для оценки с надежностью 0.995 математического ожидания a,

$$\sigma_{\Gamma} = 9, \ \overline{x}_{s} = 16, \ n = 36$$

- 4. Из аэровокзала отправились два автобусаэкспресса. Вероятность своевременного прибытия каждого автобуса в аэропорт равна 0,95. Найти вероятность того, что: а) оба автобуса прибудут вовремя; б) оба автобуса опоздают:
- в) только один автобус прибудет вовремя; г) хотя бы один автобус прибудет вовремя.

Билет 2

- 1. Даны значения случайной величины *X*: 6, 5, 3, 9, 5, 4, 8, 5, 8, 5, 9, 8. Надо
- а) записать вариационный ряд и закон распределения; б) найти размах, моду и медиану; в) найти математическое ожидание и дисперсию; в) построить полигон частот.
- 2. Для CB X, распределенной по нормальному закону, известно, что

 $M(X) = 2, \quad D(X) = 4$

Записать плотность вероятности $f(x) \prod_{\mathbf{H} \ \mathbf{H} \ \mathbf{H} \ \mathbf{H} \ \mathbf{H} \ \mathbf{H}} P(1 < X < 5)$

3. Найти доверительный интервал для оценки с надежностью 0,99 математического ожидания a, если

 $\sigma_{\Gamma} = 8$, $\overline{x}_{g} = 15$, n = 25

4. В офисе работают три кондиционера. Для каждого кондиционера вероятность выхода из строя составляет 0,8. Найти вероятность того, что выйдут из строя: а) два вентилятора; б) хотя бы один вентилятор; в) все вентиляторы.

Билет 4.

- 1. Даны значения случайной величины *X*: 3, 6, 3, 7, 5, 3, 4, 5, 8, 5, 7, 8. Надо а) записать вариационный ряд и закон распределения; б) найти размах, моду и медиану; в) найти математическое ожидание и дисперсию; в) построить полигон частот.
- 2. Для CB X, распределенной по нормальному закону, известно, что

 $M(X) = 5, \ D(X) = 4$ Записать

плотность вероятности f(x) и найти P(3 < X < 7)

- 3. Найти доверительный интервал для оценки с надежностью 0,95 математического ожидания a, если $\sigma_{\Gamma}=6, \ \overline{x}_{_{\it g}}=20, \ n=25$
- 4. В среднем 20% студентов сдают экзамен по математике на "отлично". Найти вероятность того, что из пяти случайно выбранных студентов оценку "отлично" получат: а) все студенты; б) хотя бы один студент.

Контрольная работа №3 Вариант №1

- **1.** В первом ящике 2 красных и 5 синих папок, во втором 4 красных и 3 синих. Из первого ящика переложили 2 папки во второй, после чего из второго ящика наудачу достали одну папку. Какова вероятность того, что она красного цвета?
- **2.** Вероятность сдачи студентом контрольной работы в срок равна 0,7. Найти вероятность того, что из 5 студентов вовремя сдадут контрольную работу:

- а) ровно 3 студента; б) хотя бы один студент.
- **3.** Всхожесть хранящегося на складе зерна равна 80%. Отбираются 400 зерен. Определить вероятность того, что из отобранных зерен взойдут:
 - а) ровно 303; б) от 250 до 330.
- **4.** Котировки акций могут быть размещены в Интернете на трех сайтах. Материал есть на первом сайте с вероятностью 0,7, на втором с вероятностью 0,6, на третьем с вероятностью 0,8. Студент переходит к новому сайту только в том случае, если не найдет данных на предыдущем. Составить закон распределения числа сайтов, которые посетит студент.

Найти:

- а) функцию распределения этой случайной величины и построить ее график;
- б) математическое ожидание и дисперсию этой случайной величины.
- 5. Случайная величина X имеет нормальный закон распределения с параметрами a и σ^2

Найти:

- а) параметр σ^2 , если известно, что математическое ожидание M(X)=5 и вероятность P(2 < X < 8) = 0.9973;
 - б) вероятность P(X<0).

Вариант 2

- **1.** Дано восемь карточек с буквами H, M, И, И, Я, Л, Л, О. Найти вероятность того, что:
- а) получится слово «ЛОМ», если наугад одна за другой выбираются три карточки и располагаются в ряд в порядке появления;
- б) получится слово «МОЛНИЯ», если наугад одна за другой выбираются шесть карточек.
- **2.** По телевидению с 1 сентября начинают показывать 4 новых сериала. Вероятность того, что сериал продлится до Нового года, равна 0,3. Найти вероятность того, что до Нового года из этих сериалов продлится:
 - а) ровно 2; б) хотя бы один.
- **3.** В филиале института 1000 студентов. После окончания занятий в среднем каждый десятый студент занимается в читальном зале. Сколько посадочных мест нужно иметь, чтобы с вероятностью 0,9545 их хватало всем студентам филиала.
- **4.** Законы распределения независимых случайных величин X и Y приведены в таблицах:

<i>X</i> :	X_{i}	0	1	2
	p_i	0,1	?	0,7

y_j	1	3	
p_j	0,6	?	

Y:

Найти:

- а) вероятности P(X=1) и P(Y=3);
- б) закон распределения случайной величины Z = X + Y;
- в) математическое ожидание M(Z) и дисперсию D(Z);
- г) функцию распределения F(z).
- **5.** Уровень воды в реке случайная величина со средним значением 2,5 м и стандартным отклонением 20 см. Оценить вероятность того, что в наудачу выбранный день уровень воды:
 - а) превысит 3 м; б) окажется в пределах от 2м 20см до 2м 80см.

Вариант 3

1. На школьном участке посадили три плодовых дерева: яблоню, грушу и сливу.

Вероятность того, что приживется яблоня, равна 0.8, груша -0.9, слива -0.7. Найти вероятность того, что

- а) приживутся два дерева; б) приживется хотя бы одно дерево.
- 2. В семье пять детей. Найти вероятность того, что среди них:
- а) два мальчика; б) более двух мальчиков;
- в) не менее двух и не более трех мальчиков.

Вероятность рождения мальчика принять равной 0,51.

- **3.** Сколько раз надо подбросить симметричную монету, чтобы с вероятностью 0,9 частость проявления герба отличалась от его вероятности не более, чем на 0,01 (по абсолютной величине)?
- **4.** Имеются 10 билетов: 1 билет в партер стоимостью 500 руб., 3 билета в амфитеатр по 300 руб. и 6 билетов на балкон по 100 руб. После реализации части билетов осталось три билета. Составить закон распределения случайной величины X стоимости непроданных билетов. Найти математическое ожидание M(X).
 - **5.** Плотность вероятности случайной величины X имеет вид:

$$\phi(x) = \begin{cases} 0 & npu & x \le 1; \\ ax - 2 & npu & 1 < x \le 2; \\ 0 & npu & x > 2. \end{cases}$$

Найти:

а) параметр a; б) функцию распределения F(x) и построить ее график.

Что вероятнее: попадание случайной величины в интервал (1,6; 1,8) или в интервал (1,9; 2,6)?

Вариант 4

- 1. Студент пришел на зачет, зная 24 вопроса из 30. Какова вероятность сдать зачет, если для получения зачета необходимо ответить на один вопрос, а преподаватель задает последовательно не более двух вопросов.
- **2.** В среднем 10% заключенных в городе браков в течение года заканчиваются разводом. Какова вероятность того, что из четырех случайно отобранных пар, заключивших брак, в течение года:
 - а) ни одна пара не разведется; б) разведутся не более двух пар.
- **3.** Вероятность того, что желание, загаданное на Новый год, сбудется, равна 0,7. Найти вероятность того, что из 200 загаданных желаний сбудется:
 - а) ровно 140; б) от 120 до 150.
 - **4.** Дискретная случайная величина X задана функцией распределения:

$$F(x) = \begin{cases} 0 & \text{при} & x \le 4; \\ 0.5 & \text{при} & 4 < x \le 7; \\ 0.7 & \text{при} & 7 < x \le 8; \\ 1 & \text{при} & x > 8. \end{cases}$$

Найти:

- а) ряд распределения случайной величины X;
- б) дисперсию D(X);
- в) вероятность P(3 < X < 7,5)
- **5.** Дневная выручка магазина является случайной величиной со средним значением 10000 руб. и средним квадратическим отклонением 2000 руб.
- 1) С помощью неравенства Чебышева оценить вероятность того, что дневная выручка будет находиться в пределах от 6000 до 14000 руб.
- 2) Найти вероятность того же события, учитывая, что дневная выручка магазина является случайной величиной, распределенной по нормальному закону.
 - 3) Объяснить различие результатов.

Контрольная работа №4

Вариант 1

1. Для проверки качества поступившей партии зерна по схеме собственно-случайной бесповторной выборки произведено 10%-ное обследование. В результате анализа установлено следующее распределение данных о влажности зерна:

Проц	Мен					1	1	Бол	Ито
ент	ee 8	8	1	1	1	6–	8–	ee 20	ГО
влажност		-10	0-12	2-14	4–16	_	_		
И						18	20		
Число	7	1	3	3	2	1	7	3	140
проб		5	0	5	5	8			

Найти: а) вероятность того, что средний процент влажности зерна в партии отличается от ее среднего процента в выборке не более чем на 0,5% (по абсолютной величине); б) границы, в которых с вероятностью 0,95 заключена доля зерна, влажность которого менее 12%; в) объем выборки, при которой те же границы для доли зерна, полученные в пункте б), можно гарантировать с вероятностью 0,9876; дать ответ на тот же вопрос, если никаких предварительных данных о рассматриваемой доле нет.

2. По данным задачи 1, используя χ^2 -критерий Пирсона, на уровне значимости $\alpha = 0.05$ проверить гипотезу о том, что случайная величина X – процент влажности зерна – распределена по нормальному закону. Построить на одном чертеже гистограмму эмпирического распределения и соответствующую нормальную кривую.

3. Распределение 60 предприятий по затратам рабочего времени X (тыс. человеко-дней (чел. дн.)) и выпуску продукции Y (млн. руб.) представлены в таблице:

<i>y</i>	30–40	40–50	50–60	60–70	70–80	Итого:
x						
10–25	1	3	2			6
25–40	3	6	4	1		14
40–55		3	7	6	1	17
55–70		1	6	4	4	15
70–85			2	5	1	8
Итого:	4	13	21	16	6	60

Необходимо:

1) Вычислить групповые средние $\overline{X}_i \ U \ \overline{y}_j$, построить эмпирические линии регрессии;

2) Предполагая, что между переменными X и Y существует линейная корреляционная зависимость: а) найти уравнения прямых регрессии, построить их графики на одном чертеже с эмпирическими линиями регрессии и дать экономическую интерпретацию полученных уравнений; б) вычислить коэффициент корреляции; на уровне значимости $\alpha = 0.05$ оценить его значимость и сделать вывод о тесноте и направлении связи между переменными X и Y; в) используя соответствующее уравнение регрессии, оценить средний выпуск продукции предприятия с затратами рабочего времени 55 тыс. чел. дн.

Вариант 2

1. По схеме собственно-случайной бесповторной выборки проведено 5%-ное обследование вкладов в Сбербанк одного из городов. Результаты обследования 150 вкладов представлены в таблице:

Разме	Мене	40	60	80	100	120	Более	Итог
р вклада,	e 40	-60	-80	-100	_	_	140	o:

Найти: а) вероятность того, что средний размер всех вкладов в Сбербанке отличается от их среднего размера в выборке не более чем на 5 тыс. руб. (по абсолютной величине); б) границы, в которых с вероятностью 0,95 заключена доля вкладов, размер которых менее 80 тыс. руб.; в) объем выборки, при которой те же границы для доли вкладов, полученные в пункте б), можно гарантировать с вероятностью 0,9876; дать ответ на тот же вопрос, если никаких предварительных данных о рассматриваемой доле нет.

- **2.** По данным задачи 1, используя χ^2 -критерий Пирсона, на уровне значимости $\alpha = 0.05$ проверить гипотезу о том, что случайная величина X размер вклада распределена по нормальному закону. Построить на одном чертеже гистограмму эмпирического распределения и соответствующую нормальную кривую.
- **3.** Распределение 50 предприятий по стоимости основных производственных фондов X (млн. руб.) и стоимости произведенной продукции Y (млн. руб.) представлены в таблице:

	15–20	20–25	25–30	30–35	35–40	40–45	Итого:
y							
X							
20–30	1	4	2				7
30–40	2	4	5	2			13
40–50		5	6	2	1		14
50–60			1	3	3	4	11
60–70				1	3	1	5
Итого:	3	13	14	8	7	5	50

Необходимо:

- 1) вычислить групповые средние $\overline{X}_i U \overline{y}_j$ и построить эмпирические линии регрессии;
- 2) предполагая, что между переменными X и Y существует линейная корреляционная зависимость: а) найти уравнения прямых регрессии, построить их графики на одном чертеже с эмпирическими линиями регрессии и дать экономическую интерпретацию полученных уравнений; б) вычислить коэффициент корреляции; на уровне значимости $\alpha = 0.05$ оценить его значимость и сделать вывод о тесноте и направлении связи между переменными X и Y; в) используя соответствующее уравнение регрессии, определить среднюю стоимость произведенной продукции, на предприятиях со стоимостью основных производственных фондов 45 млн. руб.

Вариант 3

1. По схеме собственно-случайной бесповторной выборки проведено 10%-ное обследование предприятий одной из отраслей экономики в отчетном году. Результаты обследования представлены в таблице:

Выпу ск	Ме нее 30	3 0–	4 0–	5 0–	6 0–	7 0–	8 0–	Бол ее 90	Ито го:
продукци	1100 30	_	_	_	_	_	_	CC 30	10.
И,		40	50	60	70	80	90		
млн.руб. Число	6	9	1	2	2	9	5	2	100

Найти: а) вероятность того, что средний размер выпуска продукции всех предприятий отличается от его среднего размера в выборке не более чем на 5 млн. руб. (по абсолютной величине); б) границы, в которых с вероятностью 0,95 заключена доля предприятий, выпуск продукции которых менее 50 млн. руб.; в) объем выборки, при которой те же границы для доли предприятий, полученные в пункте б), можно гарантировать с вероятностью 0,9876; дать ответ на тот же вопрос, если никаких предварительных данных о рассматриваемой доле нет.

- **2.** По данным задачи 1, используя χ^2 -критерий Пирсона, на уровне значимости $\alpha = 0.05$ проверить гипотезу о том, что случайная величина X –объем выпуска продукции распределена по нормальному закону. Построить на одном чертеже гистограмму эмпирического распределения и соответствующую нормальную кривую.
- **3.** Распределение 50 российских коммерческих банков по объему вложений в ценные бумаги X (тыс. руб.) и полученной прибыли Y (тыс. руб.) представлены в таблице:

y	100-	120-	140-	160-	180-	200-	Итого
x	120	140	160	180	200	220	:
1000-	4	2	1				7
1300							
1300-	2	4	2	2			10
1600							
1600-		4	7	5	1		17
1900							
1900-			3	4	1	2	10
2200							
2200-				1	3	2	6
2500							
Итого:	6	10	13	12	5	4	50

Необходимо:

- 1) вычислить групповые средние \overline{X}_i U \overline{y}_j и построить эмпирические линии регрессии;
- 2) предполагая, что между переменными X и Y существует линейная корреляционная зависимость: а) найти уравнения прямых регрессии, построить их графики на одном чертеже с эмпирическими линиями регрессии и дать экономическую интерпретацию полученных уравнений; б) вычислить коэффициент корреляции; на уровне значимости $\alpha = 0.05$ оценить его значимость и сделать вывод о тесноте и направлении связи между переменными X и Y; в) используя соответствующее уравнение регрессии, оценить среднюю прибыль, полученную коммерческим банком, вложившим в ценные бумаги 1500 тыс. руб.

Вариант 4

1. Данные об урожайности зерновых культур в некотором регионе получены с помощью собственно-случайной бесповторной выборки. Результаты обследования 100 предприятий из 1000 приведены в таблице:

Урожайно 2 3 4 5 6 7 8 9 Ито сть, ц/га 0— 0— 0— 0— 0— 0— 0— о- го:

	_	_	_	_	_	_	_	_	
	30	40	50	60	70	80	90	100	
Число	6	9	1	2	2	9	5	2	100
предприятий			9	9	1				

Найти: а) границы, в которых с вероятностью 0,9643 заключена средняя урожайность зерновых культур для всех предприятий региона; б) вероятность того, что доля всех предприятий, урожайность зерновых культур в которых менее 50 ц/га, отличается от доли таких предприятий в выборке не более, чем на 5% (по абсолютной величине); в) объем выборки, при котором границы для средней урожайности, найденные в пункте а), можно гарантировать с вероятностью 0,9807.

- **2.** По данным задачи 1, используя χ^2 -критерий Пирсона, на уровне значимости $\alpha = 0.05$ проверить гипотезу о том, что случайная величина X урожайность зерновых культур распределена по нормальному закону. Построить на одном чертеже гистограмму эмпирического распределения и соответствующую нормальную кривую.
- **3.** Распределение 80 литейных цехов машиностроительных заводов по степени компьютеризации процессов производства X (%) и производственным затратам Y (млн. руб.) представлено в таблице:

у	5–6	6–7	7–8	8–9	9–10	Итого:
x						
10–20	-		2	4	2	8
20–30			1	5	3	9
30–40		2	3	7	1	13
40–50	4	2	10	2		18
50–60	1	3	11	2		17
60–70	2	8	5			15
Итого:	7	15	32	20	6	80

Необходимо:

- 1) Вычислить групповые средние \overline{X}_i и \overline{y}_j , построить эмпирические линии регрессии;
- 2) Предполагая, что между переменными X и Y существует линейная корреляционная зависимость: а) найти уравнения прямых регрессии, построить их графики на одном чертеже с эмпирическими линиями регрессии и дать экономическую интерпретацию полученных уравнений; б) вычислить коэффициент корреляции; на уровне значимости $\alpha = 0.05$ оценить его значимость и сделать вывод о тесноте и направлении связи между переменными X и Y; в) используя соответствующее уравнение регрессии, оценить средний процент компьютеризации процессов производства в цехах машиностроительных заводов с производственными затратами

Тесты для оценки знаний

- 1. Если события A и B взаимно-противоположны, то для их вероятностей выполнено соотношение
 - 1) p(A) = p(B); 2) $p(A) \cdot p(B) = 0$; 3) $p(\overline{A}) = p(\overline{B})$; 4) p(A) + p(B) = 1.
- 2. Если p(A) вероятность события A, то вероятность противоположного ему события равна...

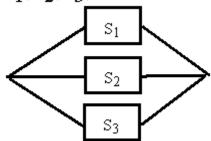
3. Вероят 1) -1; 4. Бросан	; 2) $^{1-p(A)}$; 3) 0; 4) $^{0,5+p(A)}$. ность невозможного события равна 2) 0,001; 3) 0; 4) 1. от два кубика. Событие A - «на первом кубике выпала тройка» и В - «на те выпала шестерка» являются:
1) Пнеза	ависимыми;
2) ^П несо	овместными;
3) [cobi	местными;
5. Бросан	исимыми. от два кубика. Событие А - «на первом кубике выпала единица» и В - «на се выпала двойка» являются:
1) П неза	ависимыми;
2) Hecc	овместными;
3) [cobi	местными;
,	исимыми. от две монеты. Событие А - «герб на первой монете» и В - «цифра на второй ются:
1) Пеза	ависимыми;
2) ^П несо	овместными;
3) Сові	местными;
4) 🗆 зави	исимыми.
7. В квадр	рат со стороной 5 брошена точка

Тогда вероятность того, что она попадет в выделенную область, равна

- 1) 0,4;
- 2) 0,5;
- 3) 2,5;
- 4) 0,2.

8. Игральная кость бросается один раз. Тогда вероятность того, что на верхней грани выпадет 4 очка, равна...

- $\frac{2}{3}$.
- 2) $\frac{1}{6}$;
- 3) $\frac{1}{4}$;
- 4) 0,2.


9. Игральная кость бросается один раз. Вероятность того, что на верхней грани выпадет менее трех очков, равна ...

- 1) $\frac{1}{2}$;
- 2) $\frac{1}{3}$
- $\frac{2}{3}$;
 - 4) $\frac{1}{6}$.

10. Игральная кость бросается один раз. Вероятность того, что на верхней грани выпадет менее шести очков, равна ...

5 2 1	
1) $\frac{5}{6}$; 2)1; 3) $\frac{2}{3}$; 4) $\frac{1}{6}$.	
11. Игральная кость бросается один раз. Вероятность того, что на верхней	і́ грани
выпадет более двух очков, равна	
$\frac{1}{2}$; $\frac{1}{3}$; $\frac{2}{3}$; $\frac{1}{6}$.	
12. В урне находятся 2 белых и 3 черных шара. Из урны поочередно выним:	ают два
шара. Тогда вероятность того, что оба шара белые равна 13	
	
1) ²⁰ ; 2) 0,1; 3) 0,16; 4) 0,05. 13. В урне находятся 4 белых и 5 черных шара. Из урны поочередно выним:	ают лва
шара. Тогда вероятность того, что оба шара белые равна	лот два
$\frac{16}{1)^{81}}$; $\frac{12}{17}$; $\frac{59}{72}$; $\frac{1}{6}$.	
14. Из урны, в которой находятся 7 белых шаров и 3 черных шара	вынули
одновременно 2 шара. Тогда вероятность того, что оба шара белые равна	
$\frac{21}{10^{50}}$; $\frac{7}{15}$; $\frac{7}{90}$; $\frac{7}{10}$.	
	2 2000
15. Монета брошена 3 раза. Тогда вероятность того, что «герб» выпадет ровно равна	, z pasa,
(Введите ответ)	
16. Пусть А, В, С – попарно независимые события. Их вероятности р ((A)=0,6;
p(B)=0,8; p(C)=0,25. Укажите соответствия между событиями и их вероятностями:	
$A \cdot B$; 1) $\stackrel{\square}{=}$ 0,2;	
$A \cdot C$; 2) $\stackrel{\square}{}$ 0,48;	
$B \cdot C$; 3) \Box 0,12;	
$A \cdot B \cdot C$. 4) \bigcirc 0,15;	
5) [1,65.	
17. Пусть А, В, С – попарно независимые события. Их вероятности р (А))=0,5; p
(В)=0,9; р(С)=0,2. Укажите соответствия между событиями и их вероятностями:	-
$A \cdot B$; 1) \Box 0,09;	
$A \cdot C$; 2) \Box 0,1;	
$B \cdot C$; 3) \Box 0,45;	
$A \cdot B \cdot C$ 4) \bigcirc 0,18;	
5) 1,6.	
3) 1,0. 18. Пусть A, B, C – попарно независимые события. Их вероятности p(A)=0,5; p	(B)=0.4:
p(C)=0,7. Укажите соответствия между событиями и их вероятностями:	<i>D</i> , 0, 1,
$A \cdot B$; 1) \Box 0,35;	
$A \cdot C$; 2) \Box 0,14;	
$B \cdot C$; 3) \Box 0,2;	
$A \cdot B \cdot C$. 4) \bigcirc 0,28;	
5) [1,6.	
31	

- 19. Два стрелка производят по одному выстрелу. Вероятность попадания в цель для первого и второго стрелков равны 0,6 и 0,3 соответственно. Тогда вероятность того, что оба стрелка попадут в цель, равна
 - 1) 0,28, 2) 0,15, 3) 0,9, 4) 0,18.
- 20. Два стрелка производят по одному выстрелу. Вероятность попадания в цель для первого и второго стрелков равны 0,9 и 0,4 соответственно. Тогда вероятность того, что оба стрелка попадут в цель, равна
 - 1) 0,36, 2) 0,45, 3) 0,5, 4) 0,4.
 - 21. Устройство представляет собой параллельное соединение элементов S_1 , S_2 , S_3 :

Каждый из них может выйти из строя с вероятностью 0,12. Функционирование системы нарушится, если все они выйдут из строя. Тогда вероятность правильной работы устройства равна...

- 1) 1-0,36; 2) $0,12^3$; 3) $(1-0,12)^3$; 4) $1-0,12^3$.
- 22. Событие A может наступить лишь при условии появления одного из двух несовместных событий B_1 и B_2 , образующих полную группу событий. Известны

- оятность равна... $\frac{7}{10}$ $\frac{11}{18}$; $\frac{5}{10}$ $\frac{2}{18}$; $\frac{2}{10}$ $\frac{2}{18}$; $\frac{2}{10}$ $\frac{2}{18}$; $\frac{2}{10}$ $\frac{2}{10$
- 23. Событие A может наступить лишь при условии появления одного из двух несовместных событий B_1 и B_2 , образующих полную группу событий. Известны

 $P(B_1) = \frac{3}{7}$ и условные вероятности $P(A/B_1) = \frac{1}{3}$, $P(A/B_2) = \frac{2}{3}$. Тогда вероятность P(A) равна...

- $\frac{3}{7}$; $\frac{4}{7}$; $\frac{1}{2}$; $\frac{2}{7}$; $\frac{2}{3}$
- 24. Несовместные события A, B и C не образуют полную группу, если их вероятности равны...

1)
$$P(A) = \frac{1}{6}, P(B) = \frac{1}{3}, P(C) = \frac{1}{2};$$

2) $P(A) = \frac{2}{7}, P(B) = \frac{3}{5}, P(C) = \frac{5}{7};$

2)
$$P(A) = \frac{1}{5}, P(B) = \frac{2}{3}, P(C) = \frac{2}{5};$$

4)
$$P(A) = \frac{1}{12}, P(B) = \frac{7}{12}, P(C) = \frac{1}{3}.$$

25. Несовместные события А, В и С не образуют полную группу, если их вероятности

равны...

1)
$$P(A) = \frac{2}{7}, P(B) = \frac{3}{5}, P(C) = \frac{5}{7};$$

2) $P(A) = \frac{1}{5}, P(B) = \frac{2}{3}, P(C) = \frac{2}{5};$
3) $P(A) = \frac{1}{6}, P(B) = \frac{1}{3}, P(C) = \frac{1}{2};$
4) $P(A) = \frac{1}{12}, P(B) = \frac{7}{12}, P(C) = \frac{1}{3}.$

26. В первом ящике 7 красных и 9 синих шаров, во втором 4 красных и 11 синих шаров. Из произвольного ящика вынули один шар. Тогда вероятность того, что вынули синий шар, равна...

$$\frac{9}{10} \cdot \frac{11}{15}; \qquad \frac{9}{16} + \frac{11}{15}; \qquad \frac{1}{2} \left(\frac{7}{9} + \frac{4}{11} \right); \qquad \frac{1}{2} \left(\frac{9}{16} + \frac{11}{15} \right).$$

27. В первой урне 2 черных и 8 белых шаров, во второй 3 белых и 7 черных шаров. Из наудачу взятой урны вынули один шар. Тогда вероятность того, что вынули белый шар, равна...

1) 0,6; 2) 0,55; 3) 0.25; 4) 0,11.

28. В первой урне 7 черных и 3 белых шаров, во второй 6 белых и 4 черных шаров. Из наудачу взятой урны вынули один шар. Тогда вероятность того, что вынули белый шар, равна...

1) 0,5; 2) 0,45; 3) 0.25; 4) 0,9.

29. В первой урне 13 черных и 7 белых шаров, во второй 7 белых и 8 черных шаров. Из наудачу взятой урны вынули один шар. Тогда вероятность того, что вынули белый шар, равна...

$$\frac{12}{17} + \frac{10}{17}; \quad \frac{12+10}{17+17}; \quad \frac{1}{2} \left(\frac{7}{20} + \frac{7}{15} \right); \quad \frac{1}{2} \frac{12+10}{17+17}.$$

30. В первой урне 12 черных и 5 белых шаров, во второй 7 белых и 10 черных шаров. Из наудачу взятой урны вынули один шар. Тогда вероятность того, что вынули белый шар, равна...

1)
$$\frac{35}{289}$$
; 2) $\frac{12}{17}$; 3) $\frac{6}{17}$; 4) $\frac{1}{2} \left(\frac{5}{12} + \frac{7}{10} \right)$

31. С 1-го станка на сборку попадает 60%, со 2-го — 40% всех деталей. Среди деталей 1-го станка 70% стандартных, 2-го 90%. Взятая деталь оказалась стандартной. Тогда вероятность того, что она изготовлена на 1-ом станке, равна...

$$\frac{7}{13}$$
; $\frac{3}{5}$; $\frac{9}{25}$; $\frac{24}{25}$.

32. Дан закон распределения случайной величины Х:

X	1	2	3	4
P	0,	0,1	0,	α
	1		2	

33. Пусть X – дискретная величина, заданная законом распределения вероятностей:

X	- 1	5
	0,3	0,7
P		

Тогда математическое ожидание этой случайной величины равно...

1) 3,5;

2) 3,2;

3) 3.8;

4) 2.

34. Пусть X – дискретная величина, заданная законом распределения вероятностей:

X	- 1	5
P	0,7	0,3

Тогда математическое ожидание этой случайной величины равно...

1) 2,2;

2)1,5;

3) 0,8;

4) 2.

35. Пусть X – дискретная величина, заданная законом распределения вероятностей:

X	- 1	5
P	0,2	0,8

Тогда математическое ожидание этой случайной величины равно...

1)2;

2) 4,2;

3) 3.8;

4) 4.

36. Пусть X – дискретная величина, заданная законом распределения вероятностей:

X	- 1	4
P	0,4	0,6

Тогда математическое ожидание этой случайной величины равно...

1)2;

2) 3:

3) 2:

4) 1,5.

37. Пусть X – дискретная величина, заданная законом распределения вероятностей:

X	-1	0	5
P	0,1	0,	0,6
		3	

Тогда математическое ожидание случайной величины Y = 6X равно...

1) 24;

2) 18,6;

3) 8,9;

4) 17,4.

38. Пусть X – дискретная случайная величина, заданная законом распределения вероятностей

X	-2	1	3
P	0,1	0,	0,6
		3	

Тогда математическое ожидание случайной величины Y = 2X равно...

1) 3,8;

2) 3,7;

3) 2;

4) 1,9.

39. Точечная оценка математического ожидания нормального распределения равна 12. Тогда ее интервальная оценка может иметь вид

1) (11,4; 12),

2) (11,4; 12,6),

3) (12; 12,6),

4) (11,4; 11,5).

40. Точечная оценка математического ожидания нормального распределения равна 15. Тогда ее интервальная оценка может иметь вид

1) (14,3; 15),

2) (14,3; 15,7),

3) (15; 15,7),

4) (15,3; 15,8).

41. Точечная оценка математического ожидания нормального распределения равна 13. Тогда ее интервальная оценка может иметь вид

1) (13; 13,2),

2) (12,8; 13,1),

3) (11,8; 14,2),

4) (12.8:

14).

42. Случайная величина X распределена равномерно на отрезке [2;6]. Тогда случайная величина Y=3X-1 имеет

1) другой (кроме равномерного и нормального) вид распределения;

2) нормальное распределение на отрезке [5; 17];

3) равномерное распределение на отрезке [6; 19];

4) равномерное распределение на отрезке [5; 17].

43. Непрерывная случайная величина X задана плотностью распределения

$$f(x) = \frac{1}{12\sqrt{2\pi}}e^{-\frac{(x-13)^2}{288}}$$

 $f\left(x\right) = \frac{1}{12\sqrt{2\pi}}e^{-\frac{|x-1.5|}{2.88}}$. Тогда математическое ожидание этой нормально вероятностей распределенной случайной величины равно...

- 1) 13.
- 2) 288,
- 3) 12,
- 4) 144.
- 44. Непрерывная случайная величина X задана плотностью распределения

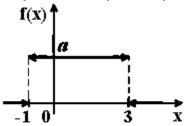
$$f(x) = \frac{1}{7\sqrt{2\pi}}e^{-\frac{(x-8)^2}{98}}$$

 $f(x) = \frac{1}{7\sqrt{2\pi}}e^{-\frac{|x-8|^2}{98}}$. Тогда математическое ожидание этой нормально вероятностей распределенной случайной величины равно...

- 2) 8,
- 3) 7,
- 4) 98.
- 45. Непрерывная случайная величина Х задана плотностью распределения

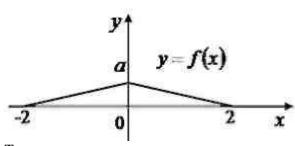
$$f(x) = \frac{1}{2\sqrt{2\pi}}e^{-\frac{(x-3)^2}{8}}$$

. Тогда математическое ожидание этой нормально вероятностей распределенной случайной величины равно...

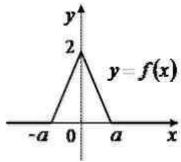

- 1) 3,
- 2) 8,
- 3) 2,
- 4) 4.
- 46. График плотности распределения непрерывной случайной величины X имеет вид

$$f(x) = \begin{bmatrix} \frac{1}{5}a, & ecnu & x \in [-1, 4]; \\ 0, & ecnu & x \notin [-1, 4]. \end{bmatrix}$$

Тогда значение a равно...

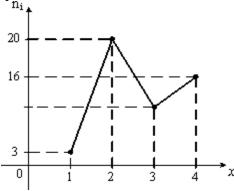

(Введите ответ)

47. График плотности распределения вероятностей непрерывной случайной величины X, распределенной равномерно в интервале (-1;3), имеет вид:


Тогда значение а равно...

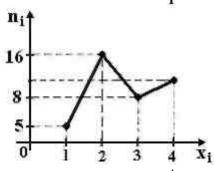
- 1) 0,33;
- 2) 0,25;
- 3) 1;
- 4) 0,2.
- 48. График плотности распределения вероятностей случайной величины приведен на рисунке.

Тогда значение а равно...


- 1) 0,5;
- 2) 1;
- 3) 0,75;
- 49. График плотности распределения вероятностей f(x) случайной величины приведен на рисунке:

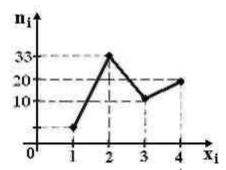
Тогда значение а равно...

- 1) 0,5;
- 2) 1;
- 3) 0,75;
- 4) $\sqrt{2}$.
- 50. Мода вариационного ряда 1, 2, 2, 3, 4, 7 равна...
- 1) 2,
- 2) 7,
- 3) 19,
- 4) 3.
- 51. Мода вариационного ряда 1, 1, 2, 5, 7, 8 равна...
- 1) 1,
- 2) 8,
- 3) 24,
- 4) 2
- 52. Мода вариационного ряда 4, 5, 7, 7, 8, 9 равна...
- 1) 7,
- 2) 40,
- 3) 9,
- 4) 4.


53. Из генеральной совокупности извлечена выборка объемом n=52, полигон частот которой имеет вид

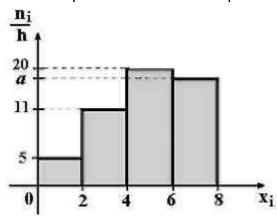
Тогда число вариант $x_i = 3$ в выборке равно...

- 1) 10,
- 2) 13,
- 3) 40,
- 4) 11.


54. Из генеральной совокупности извлечена выборка объемом n=40, полигон частот которой, имеет вид

Тогда число вариант $x_i = 4$ в выборке равно

- 1) 10.
- 2) 12,
- 3) 40,
- 4) 11.


55. Из генеральной совокупности извлечена выборка объемом n=70, полигон частот которой имеет вид

Тогда число вариант $x_i = 1$ в выборке равно

- 2) 8,
- 3) 70,
- 4) 7.

56. По выборке объема n=100 построена гистограмма частот:

Тогда значение а равно...

- 1) 64:
- 2) 14:
- 3) 13;

57. Статистическое распределение выборки имеет вид

Xi	- 2	1	3	4
n_i	2	5	6	7

Тогда относительная частота варианты х₃ равна...

- 1) 0,25;
- 2) 0,3;
- 4) 0.1:

58. Из генеральной совокупности извлечена выборка объема n=50

50.115	1 Circ pasibil	on cobony	, 111100111 11	obsie ielia i
Xi	1	2	3	4
n_i	\mathbf{m}_1	9	8	7

Тогда т1 равен...

- 1) 27:
- 2) 50:
- 3) 26:
- 4) 10.

59. Из генеральной совокупности извлечена выборка объема n=50

57. H3 Tellepanblion cobokylilloctu usbiic-tel			висчена в	
Xi	1	2	3	4
n;	13	12	m ₃	10

Тогда та равен...

- 1) 11;
- 2) 15
- 4) 16;
- 4) 50.

60. Проведено четыре измерения (без систематических ошибок) некоторой случайной величины (в мм): 3, 5, 6, 10. Тогда несмещенная оценка математического ожидания равна

- 1) 6,
- 2) 6,25,
- 3) 6,5
- 4) 5.

61. Проведено четыре измерения (без систематических ошибок) некоторой случайной величины (в мм): 2, 3, 7, 9. Тогда несмещенная оценка математического ожидания равна

1) 5,5;

- 2) 5;
- 3) 6;
- 4) 5,25.

62. Если основная гипотеза имеет вид быть гипотеза

 H_0 : a = 15, то конкурирующей может

- 1) $H_0: a \ge 15$
- 2) $H_0: a \le 25$ 3) $H_0: a \le 15$,
- 4) $H_0: a \neq 15$

63. Если основная гипотеза имеет вид быть гипотеза

1) $H_0: a \ge 14$

 $H_0: a = 14$, то конкурирующей может

2) $H_0: a \le 24$ 3) $H_0: a \le 14$, 4) $H_0: a \ne 14$.

3.2 Форма промежуточной аттестации

Промежуточная аттестация по дисциплине *«Теория вероятности и математическая статистика»* зачет.

4. Система оценивания комплекта ФОС текущего контроля и промежуточной аттестации

4.1. Система оценивания тестовых заданий

Оценка за выполнение тестовых заданий выставляется на основании процента заданий, выполненных студентами в процессе прохождения рубежного и промежуточного контроля знаний

Процент выполненных тестовых	Оценка	
заданий		
до 50 %	неудовлетворительно	
50-69%	удовлетворительно	
70-84%	хорошо	
85-100%	ОНРИПТО	

4.2. Система оценивания контрольных работ

Процент выполненных контрольных	Оценка
заданий заданий	
до 50 %	неудовлетворительно
50-69%	удовлетворительно
70-84%	хорошо
85-100%	отлично

4.3. Система оценивания самостоятельного решения задач у доски

Основные критерии при оценке ответа студента таковы:

- 1) правильность решения задачи;
- 2) отсутствие или наличие грубых ошибок;
- 3) наличие ссылок на теорию;
- 4) логичное оформление решения.

При ответе у доски уровень подготовки обучающегося фиксируется с помощью оценок «удовлетворительно», «хорошо» и «отлично». Если обучающийся имеет разрозненные, бессистемные знания, делает грубые ошибки, демонстрирует отсутствие знаний теории по содержанию задачи, не может решить профессиональные задачи, то выставляется оценка «неудовлетворительно».